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Abstract. Blockchain can be successfully utilised in diverse areas, includ-
ing the financial sector and the Information and Communication Technol-
ogy environments, such as computational clouds (CC). While cloud com-
puting optimises the use of resources, it does not (yet) provide an effective
solution for the secure hosting scheduling and execution of large comput-
ing and data applications and prevention of external attacks.

This chapter briefly reviews the recent blockchain-inspired task
scheduling and information processing methods in computational clouds.
We pay special attention to security, intrusion detection, and unautho-
rised manipulation of tasks and information in such systems. As an exam-
ple, we present the implementation of a new blockchain-based scheduler
in the computational cloud. We defined a new Proof of Schedule consen-
sus algorithm, which works with the Stackelberg game, regulates check-
ing and adding new blocks to the blockchain, and determines how to
validate schedules stored in transactions. The proposed model assumes
competition between different schedule providers. The winner of such a
competition takes account of the client’s requirements faster and prepares
an optimal schedule to meet them. The presented scheduler extends the
possibilities of using different scheduling modules by the end-users. By
delegating the preparation of the schedules, providers can get benefits
only for that, without executing customer tasks.
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1 Introduction

The recent digital revolution has contributed to increasing the volume, veloc-
ity and variety of data available on the Internet. In the era of Information and
Communication Technology (ICT), one struggles with such problems as collect-
ing and optimally managing such large amounts of data. The most important
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research and challenging engineering tasks related to the ICT systems include
ensuring secure network communication of users, data processing and data stor-
age without the nefarious involvement of third parties. The financial aspects are
also crucial. One of the possible solutions to such problems may be the appli-
cation of the Blockchain (BC) technology and networks for the development of
the new models of the networks and ICT systems, especially in the cases where
security aspects are essential [29].

A rapid progress in developing the new distributed cyber-physical infrastruc-
tures of various scales leads to increased demand for computational resources
such as computational and data servers, warehouses, databases, networks or
services dedicated to data analysis and exploration. The Cloud Computing
paradigm has been addressed as a methodology, computing services and archi-
tecture to manage these challenges. CC has been defined by Buyya et al. [10] as
a simple extension of the grid infrastructure consisting of data centres, where the
capabilities of business applications are provided as services that are available in
the network. Cloud service providers receive profits for enabling their customers
to access such services. On the other hand, consumers are motivated by reducing
the related costs. Cloud Computing is not an entirely new model or paradigm
but rather an evolution of the following models and technologies:

– Computational Grid [19] – a system composed of many connected com-
puters in the distributed clusters [10] that cooperate in a large-scale network.

– Virtualization of the available resources – an architectural model, in
which many virtual computing devices are visible as one large computing
unit. There is no need in the Grid to overhaul the hardware infrastructure
to obtain more computing power, and both the infrastructure and computing
power are optimally used. Many software tools allow virtualizing machines,
for instance: VMware, KVM, Xen [16], or OpenStack Platform [18] which is
a more recent and innovative solution. Computational Grid may refer to the
hardware resources and the data layer that provides a simpler interface and
methods for accessing data. There can be many sources of data, but the user
who relies on this data will see one abstract layer [48].

– Utility Computing Networks [11] - a model for providing specific
resources on-demand and estimating fees based on their consumption;

– Service-Oriented Architecture (SOA) [37] - network architectural model
focused on the defined services that meet the end users’ requirements.

The most popular model of the cloud environment defines Cloud Computing
as a multilayer system [39], where the following layer-stack can be specified:

– Infrastructure as a Service (IaaS) - the bottom layer of the system, it provides
the client with IT infrastructure such as software, hardware or servicing,

– Platform as a Service (PaaS) - the middle layer, it provides ready-to-use and
customized applications without the need to purchase hardware or software
licenses,

– Software as a Service (SaaS) - the upper layer, it provides users with specific
software features, such as e-mail access or calendar.
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The world-leading cloud providers such as Google, Microsoft and Amazon
initially used clouds in running their internal business operations. However, after
the building of large data centres and data servers farms in many countries
[7,8], they noticed a broader potential of the solution. They started offering the
external enterprises the previously unused resources or services such as data
storage or data processing. There are various methods of classification of cloud
environments.

While designing and offering their products to customers, service providers
have to take into account the end-to-end personalization of these services and
their potential impact on end users’ activities, including their business decisions.
This is why it is essential to ensure the appropriate service level, which is usually
done by concluding a specific contract between providers and consumers, i.e.
Service Level Agreement (SLA). As many clients may want to use the same
services at the same time, the providers must schedule tasks to achieve the
desired quality and pace of service, under the provisions of the SLA. On the other
hand, from the providers’ perspective, it is essential to minimize the maintenance
costs by shutting down resources where unused services are running. To do it
quickly, proper scheduling of tasks is necessary.

In practice, the wide-area cloud infrastructure is usually defined as a collec-
tion of many cloud clusters working under the same or various cloud standards
and administrators. Such distributed cloud clusters are connected by using the
standard peer-to-peer (P2P) network. similar model works for the blockchain
network, which was the first reason for trying to integrate both environments
in order to improve the security policies in global clouds. There are two main
methods of integration of the cloud with blockchain platforms:

– Using the cloud for the development of blockchain applications and supporting
the integration with enterprise networks (private clouds) to facilitate storage,
replication and access to transactional data;

– Using blockchain methods to improve the security of task, user and data
management in the clouds.1

This chapter briefly reviews the recent blockchain–inspired task scheduling
and information processing methods in computational clouds, which are mainly
based on the second above mentioned integration method. We pay special atten-
tion to security, intrusion detection, and unauthorised manipulation of tasks and
information in such systems. As an example, we present the implementation of
a novel blockchain–based scheduler in the computational cloud. We defined a
new Proof of Schedule consensus algorithm, which works with the Stackelberg
game, regulates checking and adding new blocks to the blockchain, and deter-
mines how to validate schedules stored in transactions. Such an approach must
result in competition between different schedule providers, won by the one who
takes account of the client’s requirements faster and prepares an optimal sched-
ule to meet them. The presented scheduler extends the possibilities of using
1 The model of the developed blockchain–based scheduler along with the comprehen-

sive experimental analysis were published in A. Wilczyński’s PhD dissertation [49]
available at https://doktoraty.iet.agh.edu.pl/ media/2020:awilcz:phd thesis aw.pdf.

https://doktoraty.iet.agh.edu.pl/_media/2020:awilcz:phd_thesis_aw.pdf
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different scheduling modules by the end-users. By delegating the preparation of
the schedules, providers can get benefits only for that, without having to execute
customer tasks

The rest of the chapter is organized as follows. In Sect. 2 we present the
basic definitions and the concept of the blockchain network. Section 3 presents
the recent developments in security-aware scheduling in cloud computing. The
new blockchain–based secure cloud scheduler is defined in Sect. 4 along with the
examples of the a simple experimental evaluation (see Sect. 4.8). The chapter
ends with the conclusions in Sect. 5.

2 Blockchain Backgrounds

There are many definitions of blockchain. Most of them refer to the origins of
the blockchain technology that evolved from Bitcoin [36]. Blockchain is usually
considered a distributed ledger of records containing cryptographically signed
transactions grouped into blocks. The main properties of blockchain technology
can be defined as follows [44,55]:

– decentralization – in all standard transaction systems, there is typically a
central unit called the supervisor, confirming the compliance of the transac-
tion and recording it in the system. Since such a core unit must handle all the
requests and approve them, it is often a bottleneck that determines the entire
system’s efficiency. BC lacks that problematic central supervisor because the
decentralized nature of the BC system based on consensus algorithm jointly
confirms each transaction, maintaining data consistency,

– persistence – since the transactions are validated, any attempt to approve
transactions being incompatible with the established policies are immediately
detected by confirming/mining nodes; blocks containing incorrect data are
immediately detected, too,

– anonymity – each user in the network is assigned a generated address (hash)
utilizing which they can perform operations. This address does not allow
unambiguous identification of a real user,

– auditability – each transaction must refer to some previous transactions;
hence there is a possibility to trace and verify what has happened with the
processed data. For instance, in the bitcoin network, one can check how the
balance of a given user has changed since the beginning of its existence in the
system,

– transparency – transactions of any public address are available for inspec-
tion by every user having access to BC; each user of the public network has
the same rights,

– security – chain of blocks are shared, tamper-proof, and cannot be spoofed
due to one-way cryptographic hash functions. The use of cryptographic meth-
ods ensures the security of transactions. Roughly speaking, users can send
data only if they have a private key. The private key is applied to generate
a signature, which in, turn, serves to confirm that transaction was requested
by a specific user and to prevent it from being changed,
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– immutability – data stored in BC are immutable; each entry in the ledger
must be confirmed by the network, so it cannot be a secret operation. Each
block contains the previous block’s hash, which is generated based on the data
in the block. Therefore, even a minor change in the data results in the change
of the hash and consequent interception and rejection of the modification by
the other nodes.

2.1 Blockchain Network

Blockchain architectural model is defined as the distributed network composed
of the nodes and users in the following way:

– nodes - individual systems that store the blockchain and ensure transactions
are valid;

– users - persons or entities that can read the ledger;
– Peer–to–peer (P2P) – generic architectural model [13], in which each node can

communicate with each other without the need of using a central information
exchange point.

The abstract model of the BC network is presented in Fig. 1.
There is no general standard in creating a blockchain network that would

allow communication between all blockchain networks. For now, each blockchain
is made separately, and communications between different blockchain networks
require special workarounds. Each BC network works on predefined rules that
all nodes in the network agree on. These rules include conditions for adding and
validating transactions and the mechanism of interaction between participating
nodes. All standard communication rules used by the BC network are called the
blockchain protocol.

2.2 Blockchain Components, Protocols and Algorithms

The ledger in the blockchain network is defined as a chain of blocks. Each block
contains a hash digest of the previous block. A simple model of the block is
presented by Yaga et al. in [54], and it consists of the following components:

1. Block Header:
– block number;
– hash of a current block – hash generated from the data contained in the

block and previous blocks, usually determined using the Merkle tree (see
Fig. 2), any modification of the data in the block will change the hash;

– hash of a previous block;
– timestamp;
– nonce value – the value generated based on Proof of Work through solving

the hash function, which allows adding the block to the chain.
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Fig. 1. Decentralized blockchain network Source: [49]

2. Block Data:
(a) a list of transactions - a single transaction usually consists of:

– inputs - the input data are usually digital assets to be sent; the source
of the asset (its origin) is located here,

– outputs - in the outputs usually the recipient of digital assets is
defined, along with how many digital assets are receiving and con-
ditions that must be met to spend this value,

(b) other data.

Each ledger starts with a Genesis Block and each following block must be
added to the chain after it. The Genesis block defines the initial state of the
system. An example of chain of blocks is shown in Fig. 3.

The blockchain operation comprises a few simple steps:

1. The sending node prepares new data as a transaction and broadcasts it over
the network.

2. The receiving node verifies the transaction and the data included in it. Each
transaction must be signed and authorized using asymmetric cryptography
[38]. The private key is used to sign transactions, while the public key is used
to identify the user (user address) and verify the signature generated with
the private key. This mechanism makes it possible to check whether the user
who sent the message is its author. The procedure of signing and verification
of the signature is shown in Fig. 4. Whenever the transaction and data pass



168 A. Wilczyński and J. Ko�lodziej

Fig. 2. Merkle tree Source: [49]

Fig. 3. Generic chain of blocks Source: [49]

the validation process, the node responds to the sending node and saves the
transaction in the block.

3. After saving the appropriate number of validated transactions in a local block,
nodes start the block confirmation procedure by the consensus adopted in the
network.

4. The block is saved in the chain after the execution of the consensus algorithm
(block confirmation by the appropriate number of nodes).

5. Every node in the BC network must locally save the approved block and
include it in its chain.

It can be noted that many blocks may be published at the same time. Con-
sequently, the existence of different versions of the blockchain in various places
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Fig. 4. The procedure of signing and verification of the signature Source: [49]

Fig. 5. Blockchain in conflict Source: [49]

is possible. It may happen for various reasons, such as network latency between
nodes. This type of problem is shown in Fig. 5. As shown in the figure, a conflict
occurs after adding the block i + 2. The block added by node A contains transac-
tions 1, 2 and 3 while the block added by node B contains transaction 1, 2 and 4.
Therefore, it is not the same block. Such differences do not result from the poor
completion of the blocks. They arise from the almost simultaneous confirmation
of different transactions by the nodes. Most BC networks deal with this problem
while waiting for the addition of the next block by one of the nodes. It is assumed
that the ‘longer blockchain’ wins. In other words, the winner is the node that is
quicker to add the next block after the block, including the above conflict.
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2.3 Consensus Models

A key aspect of blockchain technology is determining which node can publish
the next block. It requires the implementation of a consensus model. The main
techniques for obtaining consensus in blockchain networks include:

– Proof of Work (PoW) - this model is the most popular method of obtaining
a consensus inBC network. The node can add a block after solving a com-
putationally intensive puzzle or cryptographic function, which can only be
done by brute force [9]. In PoW, the probability of mining a new block by
a node depends on the ratio of its computing power intended to solve the
puzzle to the total computing power of all miners connected to the network.
An example of a puzzle is presented below. The node using the hash function
SHA-256 [40] must find a hash value meeting the following criteria:

SHA256(“schedule” + “nonce”) = hash value starting with “09”

The nonce value is a numeric value that is added to the string ‘schedule’.
After each hash calculation, the nonce value is changed. This operation is
repeated until the hash value has the string beginning with “09”.

SHA256(“schedule” + “113”) =
f8ac5c8094a5ebe334ebe4ba1cde6e29acc718743575933
d6c622406177a6aa4 - means “not solved”

SHA256(“schedule” + “114”) =
a8007fd4ef5eded7a095d958b3af9e89b48b1bc3a313555
d140f8aa400eb7a6a - means “not solved”

SHA256(schedule + “115”) =
09ce2827da9ebc62bc2491ce96bdf366044247f17860826
2154d6eefb8f40721 - means “solved”

The above puzzle is not complex, but its complexity increases with each
addition of a subsequent character to string 09. This model is adopted in such
networks where suspicion prevails over the trust. Although it works well, its
obvious disadvantage is consuming substantial energy to solve the puzzles.
This type of consensus has been used in such networks as Bitcoin or Litecoin
(cryptocurrencies).

– Proof of Stake (PoS) - this model combines generating blocks with the pos-
session of a certain amount of digital assets in BC. The selection of a node
to perform a function of a validator checking if the next block can be added
to the chain is based on the number of assets it includes: the more assets a
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node has, the more likely it is to be selected. Therefore, the strategy assumes
that nodes with more assets can provide more reliable information than those
with fewer assets. Usually, tokens are used to determine the number of assets.
Assuming that a node in the network has a maximum of 100 tokens and the
node has 20 tokens, it has a 20% chance to become a validator and mine a
block. Such an approach may lead to a problem related to the monopolisa-
tion of the network, where the node with large assets accumulates the assets
faster than others. Therefore, in some solutions, limitations associated with
adding blocks are applied. After mining the block, the node must wait before
confirming the next one. Other solutions introduce limitations of the lifetime
of tokens: they are only valid for a specified time. Unlike PoW, PoS does
not need to consume much energy to solve puzzles and work more economi-
cally. However, nodes have to merge into groups to choose a validator, which
causes centralisation. This approach is used, for instance, in Decred [17] or
Peercoin [14]. The algorithm proposed by Wilczyński et al. in [49] called Proof
of Schedule is derived from this consensus model.

– Proof of Authority - in this model, nodes are not asked to solve puzzles or
mathematical problems. Instead, the network includes hard-configured units
called ‘authorities’, which are authorised to add new blocks and secure the
blockchain network. This strategy tends to work well in private or consortium
blockchains. Authorities receive a set of private keys with special permissions
in the network. The networks based on proof of authority may have some
issues concerning the distribution of mining load between signers and the
control of the frequency of mining.

2.4 Blockchain Taxonomies

Although blockchain is a relatively new technology, few different blockchain tax-
onomies are defined in the literature. Lin and Liao [32] divided blockchain tech-
nologies into three types, depending on the character of data availability:

– public blockchain - everyone has access to the transaction and can participate
in the process of obtaining a consensus; the examples of such a network are
bitcoin or Ethereum [46], see Fig. 6,

– private blockchain - not every node can participate in the blockchain net-
work and read the ledger; instead, access is limited and strict access rights
management is implemented. A private BC is shown in Fig. 7,

– consortium blockchain - some pre-selected nodes have direct access to BC,
and only the nodes from the consortium are allowed to add data; the data to
be viewed can be open or private. A consortium BC is shown in Fig. 8.

Another taxonomy is defined for the blockchain network. Cohn et al. in [35]
defined the following two classes according to the authorization criterion:

– permissioned blockchains - proprietary networks used by specific persons or
entities, for instance, a group of cooperating banks that process financial
transactions,
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Fig. 6. Public blockchain Source: [49]

Fig. 7. Private blockchain Source: [49]

Fig. 8. Consortium blockchain Source: [49]
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– permissionless blockchains - open networks to which anyone can access and
use data located there.

Considering basic functionality and smart contracts [47] as the main classi-
fication criteria, Hileman and Rauches [21] considered two types of blockchain
networks:

– stateless blockchain - ‘transaction-optimes’, networks limited to the function-
ality of the chain in terms of the computational complexity that they can
perform (e.g. bitcoin),

– stateful blockchain - ‘logic-optimised’, networks that have expandable func-
tionality in terms of expressing computation (e.g. dApps in ethereum [5]).

Blockchain technology is beneficial, and the particular type of blockchain
network should be chosen depending on the service offered, and the market
needs.

2.5 Security in BC Networks

Security in BC networks is provided through advanced cryptographic techniques,
various methods for determining consensus and, above all, the core aspect of this
technology, i.e. immutability of data. Joshi et al. in [24] defined the following
important security principles in the blockchain network:

– defence in penetration - the use of multiple layers of security is more effective
than the application of a single layer,

– minimum privilege - access to data should be limited to the lowest possible
level,

– manage vulnerabilities - security vulnerabilities ought to be constantly
checked and corrected,

– manage risks - the risk should be regularly assessed and managed at an envi-
ronmental level,

– manage patches - faulty system components should be corrected, tested and
developed as patches for the successive versions of the application.

Asymmetric-key cryptography is used in blockchain for the authorization
of processed transactions. The private key is used here to sign transactions, the
public key to identify addresses assigned to the user, and to verify the signatures
generated using private keys. Due to asymmetric cryptography, it is possible to
determine whether a user who gives a message to another user has a private
key with which he has been signed and thus whether he has the right to send
it. The transaction is signed with a private key, then together with the signa-
ture and public key is forwarded to the recipient. A node in the network based
on this information using the verification algorithm can authorize the received
transaction.

In practice, consensus models are responsible for providing the appropriate
level of BC network safety. For example, in PoW to make the network fake, the
node would have to possess at least 51% of the computing resources of the entire
network to be able to falsify the information contained in the blocks, which is
hardly possible in practice [52].
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2.6 Blockchain Usecases

Blockchain technologies have found their way into many practical projects. Some
of the most notable projects include:

– Guardian2 – this project defines a token for a new global emergency response
network that provides a framework for distributed emergency response sys-
tems, especially in locations far from wireless network transmitters and in
hard-to-reach areas were calling for help using an emergency number ( e.g.
112 or 911) is virtually impossible.

– Blockchain Charity Foundation3 – it is a non-profit foundation whose
mission is to create a decentralized network of charitable foundation centres,
promote sustainable development, and ensure that they are as widely acces-
sible as possible to those most in need.

– Power Ledger4 - a system that allows customers to choose a source of
electricity, enabling electricity trading with their neighbours and ensuring a
fair return on investment, where energy is stable and affordable for everyone.

– EthicHub5 - a system whose aim is to make available to all clients also indi-
vidual investors the same access to traditional financial services by democ-
ratizing finances and making available investment opportunities around the
world.

– Grassroots Economics & Bancor6 – the decentralized blockchain-based
community currencies in Kenya, aimed to combat poverty by encouraging
local and regional trade.

– VeChain7 – decentralized platform in which companies can quickly establish
contacts and make transactions without intermediation.

The above examples show that the use of this technology ensures high security
and quick execution of transactions and enables solving problems that have not
been solved in any other way.

3 Security Criterion in Scheduling and Resource
Allocation Problems in Computational Clouds

Task scheduling aims to build a schedule that determines when to execute each
task and which resources should be selected to do it. For instance, tasks must
be scheduled when there is a need to perform several calculations provided by
the users and deliver the results within a specific time. To ensure a guaranteed
Quality of Service (QoS) [27] to the clients, it is necessary to make as efficient

2 https://guardtoken.net.
3 https://www.binance.charity/.
4 https://www.powerledger.io.
5 www.ethichub.com.
6 www.businesswire.com/news/home/20180621005727/en/Bancor-Launch-

Blockchain-Based-Community-Currencies-Kenya.
7 www.investinblockchain.com.

https://guardtoken.net
https://www.binance.charity/
https://www.powerledger.io
www.ethichub.com
www.businesswire.com/news/home/20180621005727/en/Bancor-Launch-Blockchain-Based-Community-Currencies-Kenya
www.businesswire.com/news/home/20180621005727/en/Bancor-Launch-Blockchain-Based-Community-Currencies-Kenya
www.investinblockchain.com
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mapping of tasks to the given resources as possible; otherwise, the clients will
not pay for them. Therefore, task scheduling is considered one of the burning
issues to tackle in cloud computing systems.

A generic task scheduling model is shown in Fig. 9. In the figure, clients
directing requests to the cloud can be seen. The cloud broker (task scheduler)
collects the requests, responsible for decomposing requests for smaller tasks and
running them to virtual machines. After the tasks are executed, the results are
returned to the broker, passing them to the cloud client.

Cloud Broker (Task Scheduler)

Resources (n)Resources (n) Resources (n)

Hypervisor host Hypervisor host Hypervisor host

Cloud user Cloud user Cloud user Cloud user

Fig. 9. Basic task scheduling process in cloud computing Source: [34]

Task scheduling in computational clouds can be considered, in fact, as a set
of problems. Specification of the problem instances may be formulated based on
various cloud scheduling attributes, namely:

– the environment (static or dynamic),
– cloud architecture (centralized, decentralized or hierarchical),
– task processing policy (immediate or batch),
– tasks’ interrelations (independency or dependency).

Karatza et al. [20] defined the following instances of the cloud scheduling prob-
lems:

– bag-of-tasks scheduling - jobs consisting of independent tasks that can be
processed in parallel,
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– gang scheduling - jobs consisting of tasks that often communicate with one
another, which can be processed in parallel,

– Directed Acyclic Graph (DAG) scheduling [45] - jobs consisting of tasks with
a significant order of execution (workflow); tasks can be planned on different
system nodes,

– real-time scheduling - composed of jobs in which the deadlines for executing
tasks are defined,

– fault-tolerant scheduling - jobs in which there is a high probability of software
failures that may prevent the execution of the schedule.

Most of the problem instances defined above are multi-objective global opti-
mization problems. Such objectives, defined as the optimization criteria, are
usually minimized to execute the generated schedules faster and cheaper for the
clients or to do the individual tasks at a predetermined time. The most popular
optimization criteria are the following:

1. Makespan – the time of finishing the last task from the batch; the smaller the
makespan is, the faster the tasks are completed:

makespan = max{ETi, ETi+1, ..., ETn} (1)

where
ETi the ending time of the task i

n number of tasks in the batch
2. Flowtime - the sum of the ending times of all tasks from the batch; this

metric describes the response time to the client for the submitted task, and
its minimization means a reduction in the average response time of the entire
schedule:

flowtime =
n∑

i=1

ETi (2)

where
ETi the ending time of the task i

n number of tasks in the batch
3. Economic cost - the total sum the client has to pay to the provider for the

resource utilization

Economic Cost =
m∑

i=1

(Ci ∗ Ti) (3)

where
Ci the cost of 1 second of utilization the resource i
Ti time in which the resource i is utilized
m number of resources
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4. Resource utilization - maximizing the utilization of the resources, this metric
is very important for the provider whose profit raises with the reduction of
time gaps when the machine is not utilized:

Resource Utilization =
∑m

i=1 TRi

makespan ∗ m
(4)

where
TRi the time of completion of all the tasks by the resource i

m number of resources
5. Deadline constraint - defines the time limit within which the task or batch

must be executed.

More cloud scheduling criteria, such as tardiness, waiting time, turnaround
time, fairness, throughput, priority constraint, dependency constraint, budget
constraints, are defined in [25].

3.1 Security-Aware Cloud Schedulers – A Short Survey of Recent
Schedulers

While the maximization of the resource utilization and profits of the resource
owners are the key objectives of cloud scheduling, they may conflict with cloud
users’ security requirements and system reliability. Network security threats
cause a significant hurdle to ineffective job and service outsourcing in the cloud.
The cloud cluster or the cloud resource may not be accessible to the scheduler
when infected with intrusions or malicious attacks. In such cases, the failures of
the cloud resources and services during the tasks’ executions can be observed.

The security-related scheduling criteria cannot be defined as the optimization
ones. They are usually connected with monitoring all cloud users’ system per-
formance, decision strategies (including end-users), secure data, and information
storage and processing.

In this section, we briefly survey the most influential models of secure cloud
schedulers and demonstrate the usefulness of the blockchain methods.

In the first analyzed model, Ko�lodziej and Xhafa [30] proposed a scheduling
model simultaneously allowing aggregation of task abortion and ensuring secu-
rity requirements, which are the criteria for the cumulative objective function
along with makespan and flowtime. They defined a meta-broker as being respon-
sible for checking the security conditions and availability of resources. The level
of security in their approach is determined based on trust level (tl) parameters
defined for the resources and security demand (sd) defined for the tasks. These
parameters depend mainly on the user’s specific requirements, security policy,
history of attacks, or the ability to self-defence. They are described in more detail
in [28]:

• security demand - related to tasks, specified for each task in the job, refers
to data integration, task sensitivity, peer authentication, access control and
task execution environment, is defined as a vector:

SD = [sdj , sdj+1, . . . , sdn] (5)
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where
sdj one of security demand parameters, assumes a value within the range [0,1],

where 0 represents the lowest and 1 the highest security requirements for
execution task j

n number of tasks in the job
• trust level - related to resources, specified for all resources in the system, this

metric determines the level of client trust to the resource manager, refers to
prior task execution success rate, cumulative grid cluster utilization, firewall
capabilities, intrusion detection capabilities, intrusion response capabilities,
is defined as a vector:

TL = [tli, tli+1, . . . , tlm] (6)

where
tli one of trust level parameters assumes a value within the range [0,1], where

0 represents the riskiest and 1 fully trusted machine i
m number of resources

Having SD and TL vectors, it is possible to assess whether the condition of
ensuring security is met and, consequently, whether the task can be successfully
executed on a given machine. It means that sdj ≤ tli for a given (j, i) task-
machine pair. In the experimental section, the authors compared the results of
scheduling carried out in 2 different modes: a secure mode where all the secu-
rity conditions and resource uncertainty are verified for the task-machine pairs
and a risky mode where all risky and failing conditions are ignored. The mea-
surement of the makespan showed that, in comparison to the classic approach,
some scheduling algorithms performed better in risky mode when put in Grid
environments having medium or large size. On the other hand, the secure mode
brought the best results in all grid instances. The referred article addresses secu-
rity issues but its scope is fairly narrow and theoretical. It does not discuss such
issues as checking the inviolability of tasks and results, unauthorized modifica-
tion or correctness of the prepared schedule.

Another model was developed by Li et al. in [31]. They defined a model
of the security and cost-aware scheduler (SCAS) for different types of tasks in
computational clouds, intended to minimize the total cost of workflow execu-
tion while meeting the assumed deadline and risk rate limits. Their approach
was based on the application of Particle Swarm Optimization algorithm (PSO)
to create a workflow schedule with tasks mapped to the resources and to the
type and number of virtual machines that should be used. To protect the tasks
against snooping, alteration and spoofing attacks, the authors used three secu-
rity services: authentication, integrity, and confidentiality. Each task can require
all three security measures, with the security levels depending on the user’s
specification. In the experimental section, four algorithms were tested against
three workflows. Then, the impact of security services and risk coefficient were
examined. The results confirmed the effectiveness and practicality of the used
algorithm.
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Jakóbik et al. in [23] present an innovative architectural model based on
a multi–agent scheme and security-aware meta scheduler controlled by genetic
heuristics. The authors focused on the safety of task scheduling in cloud comput-
ing and described its behaviour in the event of a task injection attack. Namely,
they considered a situation in which an attacker, logged in as an authorized
consumer, tries to send an unauthorized task (see Fig. 10). It triggers a response
from the system in the form of an alert sent to the correct place: its verifica-
tion takes place before task scheduling. In addition, the authors proposed two
models supporting users security requirements, a scoring model that allows task
scheduling only on virtual machines that have an appropriate level of security and
a model that considers the time needed for cryptographic operations associated
with each specific task. These models are similar to those described by Ko�lodziej,
and Xhafa [30]. In the experimental part, the influence of non-deterministic time
intervals for the scheduling process on the environment performance was exam-
ined, and the makespan for different security levels was calculated. The results
showed the effectiveness of the proposed models and their increasingly positive
impact on the system’s safety.

time

Hacker
Task On

Hacker
Task Off

Hackers unauthorized taking control of computing
resources with task injection (user is paying)

Users tasks execution/tasks gathering

Scheduling, monitoring and communication with VMs

Fig. 10. Task injection attack proposed by Jakóbik Source: [23]

On the other hand, one should mention a relatively recent study by Lokhand-
wala [33] which is mainly related to the topic of this paper because its author
resorted to blockchain technology to solve the problem of task scheduling. In
Lokhandwala’s approach, a decentralized blockchain network was used to allo-
cate resources more efficiently, resulting in reduced energy consumption and,
consequently, costs. A load of data centres stored in blocks is checked using
smart contracts [47]. Then, the tasks to be executed are assigned to the data
centres with the most negligible load. The algorithm on which the smart con-
tract was based is shown in Fig. 11. In the experimental part, the correctness of
the blockchain network was first checked and, subsequently, the model was eval-
uated. To conduct experiments Shortest Job First (SJF) algorithm was applied
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Fig. 11. Smart contract algorithm proposed by Lokhandwala Source: [33]

whose primary purpose was to minimize the waiting time of virtual machine
(VM) response. However, the author did not measure the actual impact of the
method on the waiting time of VM response, which would require its comparison
with one of the classical methods not based on blockchain. The focus was more
on testing the functioning of the blockchain network, which included assigning
the tasks to the appropriate data centres and the security issues, i.e. blockchain
resistance to manipulate the data. Lokhandwala concluded that blockchain was
more suitable for data storage than calculating the load of Data Centres. The
block mining process turned out to be very energy-consuming due to the chosen
consensus algorithm (which probably should have been different for the case).

Hong et al. [22] discussed the problem of communication and task schedul-
ing among users in device-to-device network (D2D) [26] to reduce the average
time of task execution effectively. Their idea consisted of the wasted computing
power of mobile devices, which are typically in an idle state with nothing but
notification listeners and other low energy consumption applications activated.
The possibility of using these static resources together with the storage can lead
to highly profitable and profitable cooperation in executing tasks in D2D net-
works. There are, however, some doubts if task scheduling in such systems is fair
to everyone. It may look unfair if the users contributing a lot of their compu-
tational resources to others receive little being in dire need. Hence, Hong et al.
proposed an innovative blockchain-based credit system that can be used for task
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Fig. 12. Task scheduling in D2D network proposed by Hong Source: [22]

scheduling to enforce justice among D2D network users. Their solution consists
of cooperative task scheduling to reduce the average task execution time among
the users and a blockchain-based credit system to ensure fairness in the network.
The system model and the principle of its operation are presented in Fig. 12. The
authors checked the impact of various initial credits provided to each user, dif-
ferent maximum waiting times, task sizes, and time elapsed on the performance.
According to the results, the proposed model significantly shortens the average
task execution time for the requesters in D2D networks.

4 Blockchain-Based Secure Cloud Scheduler

Task scheduling systems available on the market (e.g., Amazon ECS8) use many
variations of scheduling algorithms (FCFS [53], SJF [12] etc.) that are, neverthe-
less, not publicly available. Cloud service providers such as Amazon Web Services
(AWS)9, or Azure10 use their algorithms to prepare schedules. The clients wish-
ing to use their services send the task to them and can only trust that it will
be done according to their expectations at the lowest possible cost. The internal

8 https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html.
9 https://aws.amazon.com/.

10 https://azure.microsoft.com/pl-pl/.

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://aws.amazon.com/
https://azure.microsoft.com/pl-pl/
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algorithms used by service providers are not always optimal in taking account
of the specific customer requirements.

In this section, a new Secure Blockchain Scheduler (BS) model defined in [50]
was described. In this model, the specific customer needs and security require-
ments are considered. We implemented the public blockchain to make the model
available to every scheduler provider who would like to participate in prepar-
ing the schedule. The provider who prepares the schedule meeting the client’s
requirements faster wins. In this case, the inter-clouds [41] approach is referred
to, in which the cooperation between cloud providers is possible whenever they
need additional services or computing resources. The defined model is based on
a similar idea according to which the providers can use the services offered by
other providers to obtain the best schedule. Communication between different
cloud providers is determined by a public blockchain, which is decentralized and
does not require the use of unique protocols for information exchange. Therefore,
the units specializing only in one field and not necessarily providing other ser-
vices can freely participate in the generation of schedules. The general concept
of the developed model is presented in Fig. 13. The main actors in that model
are clients (end users) and cloud service providers. Its main elements are the
pool of requests, transactions, nodes participating in the transaction approval
process and chain of blocks in which transactions with prepared and confirmed
schedules are located and stored.

4.1 Clients and Cloud Service Providers

Clients formulate their requirements and direct them to the cloud in our schedul-
ing model. These can be jobs related to running the executable file or executing
a source code fragment that solves some mathematical problem. Together with
a specification of their needs, they can also provide some specific conditions, for
instance:

– executing tasks on a machine with special security parameters (firewall,
antivirus, etc.) due to data sensitivity and confidentiality,

– data processing only on servers located in a defined geographical location due
to legal reasons,

– quick execution of tasks regardless of costs or the exact opposite.

Cloud service providers collect requests from clients, which are then forwarded to
Task Managers (TMs). Based on the received data describing the tasks and the
specific requirements of the client, TM who knows the available resources/virtual
machines (VMs) in his cloud, chooses the ones that will be the most suitable
for their execution. The choice is made considering requirements in terms of
security, the physical location of machines, the short waiting time for results, or
the client’s small budget. After that, the task manager performs a description
of the selected VMs and tasks to be executed.
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Fig. 13. Secure blockchain scheduler model Source: [49]
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Each VM is characterized using two factors:

– computing capacity cc,
– trust level tl (Eq. 6).

Each task is characterized using two factors:

– workload wl,
– security demand sd (Eq. 5).

In addition to the specification of machines and tasks, mainly based on secu-
rity aspects specified by the client, TM also sets the value of the expected SL
parameter for the schedule to be prepared. If the SL value is equal to 0 then all
proposed schedules designed by the nodes are accepted; otherwise, only those
whose SL value is greater than or equal to the value given by TM are considered
as correct. The SL parameter assumes values in the range [0, 3], and the higher
its value, the longer the schedule preparation because the majority of prepared
schedules are rejected. On the other hand, the higher the SL value, the more
secure the schedule is.

4.2 Pool of Requests

After preparing the characteristics of the tasks and machines and defining the
expected SL, all the information is defined as the request, which is then sent
and collected in the request pool. At this stage, the task manager also signs
the request, i.e. the future recipient of the target transaction containing the
prepared schedule. A body of such request is shown in Fig. 14. The requested
pool is generally available, and task managers from different clouds can bid.
Nodes located in the blockchain network select those requests they would like to
generate the schedule.

4.3 Nodes and Transactions

The initiating node retrieves the request from the request pool and prepares
the schedule for the tasks and machines described according to its scheduling
algorithm. After the preparation, it calculates one of the scheduling criteria,
i.e. makespan or flowtime or economic cost or resource utilization. The obtained
results are placed into the transaction with data from the request and then broad-
cast over the blockchain network for confirmation. The fully prepared transaction
is shown in Fig. 15 and contains such information as:

– id - transaction id generated based on data contained therein,
– sender (PKN) - the public key of the node preparing the transaction,
– recipient (PKTM) - the public key of the task manager creating the request,
– signature (DS) - digital signature made by the node,
– request id - id of the request sent by the task manager,
– information about the prepared schedule:
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Fig. 14. Body of request from the pool of requests Source: [49]

• tasks - id, workload and security demand of the tasks;
• machines - id, computing capacity, trust level and ids of tasks to execute;

each machine includes the assigned ids of tasks that should be executed
on it;

• scheduling criterion (SC) - makespan, flowtime, economic cost or resource
utilization.

In the defined transaction, SC is the factor that determines whether the
schedule is optimal. This factor will be replaced by makespan, flowtime, eco-
nomic cost or resource utilization. In the experimental part, the model will be
evaluated for each criterion. After obtaining the appropriate number of transac-
tion confirmations, the node places it in the block. Before adding the transaction
to the block, the SL value of the prepared schedule is calculated. If the value of
SL is, at least, at the security level specified by TM, the transaction is added to
the block. Otherwise, it is omitted because further processing and saving in the
chain of blocks would be pointless.

4.4 Chain of Blocks

The block is created and validated after collecting a sufficient number of trans-
actions, and the number of required transaction confirmations is defined as a
global parameter for the entire BC network. Each block consists of:

– the block hash value (Bhv) - calculated on the basis of previous block hash
value, a timestamp and the Merkle tree root hash value,

– the previous block hash value (PBhv),
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Fig. 15. Body of the transaction Source: [49]

– a timestamp (Tim),
– the Merkle tree root hash value (MTRhv) (see Fig. 2), generated using the

SHA-256 hash function [40],
– a list of transactions - transactions with prepared schedules, containing the

information presented in the Fig. 15.

Once all the block building requirements are met, it is mined by mining node
and distributed across the BC network. During block propagation, some conflicts
may occur because several nodes may try to add many blocks simultaneously.
As a result, different versions of the chain of blocks may be provided (see Fig. 5).
Such situations are resolved by adopting a rule to wait for the next added block
and invariably recognize a more extended sequence of blocks as official; in other
words, the first node successful in adding the following block prevails. After
confirming the chain throughout the BC network and recognizing it as official (a
fragment of such a chain is shown in Fig. 16) task managers can load the schedule
prepared for them. They obtain it using their public key; each transaction with
a prepared schedule is addressed to the TM whose PKTM was given in the pool
of requests. Having the schedule, TM can allocate tasks to the resources and
monitor them. At this moment, the whole process ends.
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Fig. 16. The first few blocks from the chain of blocks of the model Source: [49]

4.5 Proof of Schedule – Generalized Stackelberg Game

We introduce in our model a new consensus algorithm – Proof of Schedule
(PoSch) [50], based on the Stackelberg game. Our consensus algorithm is dedi-
cated to regulating schedule checking and adding new blocks to the chain.

Let us denote by i to l the nodes (task schedulers), which participate in
the approval of the schedule (transaction). Node tsi, based on the pool of tasks
and their workloads and the collection of virtual machines and their comput-
ing capacities, prepares the most optimal schedule according to its algorithm
and gives its adopted scheduling criterion; let’s assume that in this case, it is
makespan. After the preparation, the schedule is placed in the transaction and
disseminated across the network. The nodes that receive the transaction for
confirmation also prepare the schedule according to their algorithms and calcu-
late its makespan. The following notation will be used to present the described
procedure:

– TS = {tsi, tsi+1, . . . , tsl} - the set of nodes involved in confirming transaction,
– wlj - characterization of the task j,
– wl(schedule) - the sum of vector elements [wl1, . . . , wln], defined for all tasks

from schedule,
– tsi - node initiating the transaction,
– tsi+1 - first node confirming the transaction,
– Mtsi

- makespan of the schedule determined by node tsi,
– Mtsi+1 - makespan of the schedule determined by node tsi+1,
– SFtsi

- scheduling factor of the tsi node, the sum of wl(schedule) for all
schedules in the blockchain added by node tsi,

– SFtsi+1 - scheduling factor of the tsi+1 node, the sum of wlsch for all schedules
in the blockchain added by node tsi+1,

– BWt - the sum of wl(schedule) for all schedules added to the blockchain
within a given period of time t.
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Each subsequent node verifies the schedule sent by its predecessor, which does
not mean that the predecessor prepared it (it can be a schedule from the initi-
ating node). First, it prepares the schedule according to its algorithm and then
calculates its makespan. The schedule described above confirmation/approval
can be formally modelled using Generalized Stackelberg Game model. In this
game, there are many players and the game is defined as sequential with the
choice of strategy by one player in each stage. In first stage, the game takes
place between nodes tsi − leader and tsi+1 − follower; the assumption is that
the node tsi has already made its move. The next move is performed by node
tsi+1, which has two options to choose:

• Mtsi
- makespan proposed by the leader tsi;

• Mtsi+1 - makespan calculated by its own algorithm.

The follower chooses one of two pure strategies defined as:

• s1 - choosing makespan Mtsi
;

• s2 - choosing makespan Mtsi+1 ;

where s1, s2 ∈ {0, 1}.
To determine the utility function for the follower, the scheduling factors,

which are treat as confidence coefficients must be scaled, which is carried out as
follows:

SFtsi
=

{
1 if max {SFtsi+1 , SFtsi

} = SFtsi
SFtsi

SFtsi+1
if max {SFtsi+1 , SFtsi

} �= SFtsi

SFtsi+1 =

{
1 if max {SFtsi

, SFtsi+1} = SFtsi+1
SFtsi+1
SFtsi

if max {SFtsi
, SFtsi+1} �= SFtsi+1

(7)

The utility function for the follower depends on both strategies s1 and s2 and
scaled confidence coefficients of players:

u(s1, s2,Mtsi
,Mtsi+1) = Mtsi

SFtsi
s1 + Mtsi+1SFtsi+1s2 (8)

Looking for a strategy is tantamount to solving the following problem:
⎧
⎪⎨

⎪⎩

argmax
s1,s2

u(s1, s2,Mtsi
,Mtsi+1)

s1 + s2 = 1
s1, s2 ∈ {0, 1}

(9)

The problem 9 is a maximization problem with constraints, which was solved
using the simplex method [42]. Once the solution, i. e. strategies s1 and s2, are
found, node tsi+1 chooses:

– the option Mtsi
, if s1 = 1 and s2 = 0,

– the option Mtsi+1 , if s2 = 1 and s1 = 0.
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If node tsi+1 loses the game (it chose the option Mtsi
), it sends transaction

from node tsi to the next node tsi+2 and notifies the node tsi about the correct-
ness of its schedule, so the next stage of the sequential game is taking place, where
node tsi remains the leader and the follower is the next node tsi+2. Otherwise,
node tsi+1 initiates a new transaction according to its own schedule, becoming a
leader and sends it for verification to the node tsi+2, which is the first follower.
The game is carried out until the node receives confirmation from the appropri-
ate number of TS sequence items. The fewer confirmations the system requires,
the more transactions it can produce in a given period. On the other hand, the
more confirmations, the more secure and reliable the system is in comparison
to the other systems [6]. This value should be selected individually, depending
on the system implementation. In the proposed approach, the minimum num-
ber of transaction confirmations (MTC) is defined as a global parameter during
blockchain initialization. SFtsi

, SFtsi+1 coefficients must be non-zero, so if nodes
participating in the game do not yet have such data, they must be randomly
selected. Similarly, the initiating node tsi, having no predecessor, will choose its
time of schedule.

4.6 Blocks Mining

The block can contain many transactions. It is ready to be confirmed if the sum
of wl(schedule) for all schedules within all block transactions exceeds the set
value:

block is ready to mine if
∑p

i=1 wl(schedulei) ≥ Bwl (10)

where

– wl(schedule)
– Bwl minimum block workload defined as a global parameter set during

blockchain initialization
– p number of transactions in the block

When the appropriate Bwl indicator is obtained, the mining node can add a
block to the blockchain. Each transaction in the block must be validated. Vali-
dation is intended to check whether the providers of the transaction inputs have
cryptographically signed the transaction. The signature verifies if they have the
right to transfer funds for participation in preparing the schedule. Confirmation
nodes check the published block, demonstrating that each transaction it contains
has been validated, after which the block can be added to the blockchain. The
subsequent blocks are added by nodes called validators. V alidators are nodes
that have so far participated in the transaction creation process and have also
expressed a desire to mine a block. One leader is selected from the pool of val-
idators. The election is based on adding a node’s transaction history covering a
specified period. The selection criterion is defined as:

{
Lt = max(TF(vi,t), TF(vi+1,t), ..., TF(vi+n,t))
TF(vi,t), TF(vi+1,t), ..., TF(vi+n,t) ≤ 1

2BWt
(11)
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where

– Lt - a leader for adding the given block in the given time t
– TF(vi,t) - trust factor - the sum of all I added to the blockchain by validator

vi during time t
– BWt - the sum of all I added to the blockchain during time t

The above approach originates from the idea of Proof of Stake, namely from
its specific case referring to the hybrid of coin ageing systems and delegate
systems [54]. A node can become a leader only if its current trust factor does not
exceed the value of 1

2BWt, which protects BC network against the 51% attack
(or majority attack) to which such systems are vulnerable [1].

4.7 Profits for Task Schedulers

Nodes involved in creating or confirming transactions and block mining can
be rewarded in various ways. They usually charge a fee for performing spe-
cific actions. One of the possibilities is presented below. According to it, nodes
(task schedulers) can receive profits for participating in operations on which the
functioning of BC network is based. The task scheduler profit for creating or
confirming one transaction (schedule) P (schedule) within an entire block can
be defined as follows:

P (schedule) =
wl(schedule)

CN ∗ 0.8
(12)

where

– wl(schedule)
– CN the number of all nodes confirming the schedule (including the creating

node)

However, profit for mining the block P (block) can be defined as follows:

P (block) = wl(block) ∗ 0.2 (13)

where

– wl(block) the sum of wl(schedule) for all transactions in the block

The proposed reward approach mainly depends on whether the blockchain is
public or private. In the case of this approach, blockchain is public, but it can be
freely changed to private. Therefore, the profits model may also vary depending
on the given implementation, improved version of profits model was proposed in
[50].
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4.8 Evaluation Examples

In this section, we present the exemplary results of a simple experimental study,
where 4 different cloud schedulers were implemented along with the blockchain
algorithms11

We consider the following simple scenario:

1. The task scheduling process is run on 4 different scheduling modules; each
module uses one of the RR, FCFS, HSGA or SJF algorithms (detailed descrip-
tion of the algorithms can be found in [29]).

2. BS is launched and 16 nodes are defined in the BC network. Each of them
uses one of the four algorithms used by the scheduling modules described
in point 1 to prepare the schedule. As a result, BS saves the best schedule
selected by the network in the blockchain.

3. Schedules from points 1 and 2 are carried out for different datasets (different
number of tasks and different number of virtual machines).

4. Each of the prepared schedules is evaluated according to different metrics.
Points 1 and 2 are repeated to evaluate the schedule in terms of the values of
makespan, flowtime, economic cost and resource utilization; the security level
of the schedule is not taken into consideration (expected SL = 0). The value
of each criterion is calculated on the basis of the results of schedule execution
using the CloudSim simulator12.

5. Points 1 and 2 are repeated for different expected SL, taking into account the
makespan as a schedule evaluation criterion.

The following test datasets were prepared with the task and virtual machines
characteristics (workloads and computing capacities) together with the secu-
rity demand and trust level parameters. Tasks characteristics ([wl1, . . . , wln],
[sd1, . . . , sdn]) and virtual machines characteristics ([cc1, . . . , ccm], [tl1, . . . , tlm])
were generated according to the Gaussian distribution:

N (μ, σ2) (14)

where:

– μ mean
– σ2 variance of random variable

In the literature, there are many cases where test data is generated for sev-
eral different scenarios (different number of machines and tasks). The number
of virtual machines usually ranges between 32 and 256, while the number of
tasks from 512 to 4096. Ko�lodziej [28] provided four different scenarios where
different numbers of tasks and machines were defined and data was generated
according to the normal distribution for machines N (5000, 875) and for tasks
11 A comprehensive experimental analysis with a lot of scenarios and full statis-

tical analysis is presented in https://doktoraty.iet.agh.edu.pl/ media/2020:awilcz:
phd thesis aw.pdf.

12 http://www.cloudbus.org/cloudsim/.

https://doktoraty.iet.agh.edu.pl/_media/2020:awilcz:phd_thesis_aw.pdf
https://doktoraty.iet.agh.edu.pl/_media/2020:awilcz:phd_thesis_aw.pdf
http://www.cloudbus.org/cloudsim/


192 A. Wilczyński and J. Ko�lodziej

Table 1. Characteristics of virtual machines

Dataset 1 Dataset 2

Number of VM 32 128

Distribution of computing capacity (cc) values N (7, 4)

Measure of cc MFLOPS

Minimum value of cc 1

Maximum value of cc 12

Distribution of trust level (tl) N (0.5, 0.04)

Minimum value of tl 0.2

Maximum value of tl 1

Table 2. Characteristics of tasks

Dataset 1 Dataset 2

Number of tasks 1024 4096

Distribution of workloads (wl) values N (600, 90000)

Measure of wl MFLO

Minimum value of wl 100

Maximum value of wl 1000

Distribution of security demand (sd) N (0.8, 0.0225)

Minimum value of sd 0.6

Maximum value of sd 0.9

N (250000000, 43750000), respectively. The real characteristics of the computa-
tional units can be found on the webpages [2–4] where different processors are
compared. Taking account of the experiments conducted by Ko�lodziej, it was
decided to generate 2 different datasets of characteristics of virtual machines
and 2 different datasets of characteristics of tasks, whose key parameters are
presented in Tables 1 and 2. Datasets were generated applying the Commons
Math library [15] using the NormalDistribution class. Due to the fact that 2
datasets of characteristics of tasks and 2 datasets of characteristics of virtual
machines were generated, each task scheduling process took place on 4 different
datasets:

– 32 VM and 1024 tasks;
– 32 VM and 4096 tasks;
– 128 VM and 1024 tasks;
– 128 VM and 4096 tasks.

The main configuration parameters of the extended CloudSim presented in
Tables 3 and 4.
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Table 3. BCSchedCloudSim configuration

Number of records in the pool of requests 96

MTC 8

Bwl 1000000 MFLO

Time for which TF of validators is determined 30 days

Initial value of SF of each node in the BC network 583329 MFLO

Failure coefficient α (see Eq. 15) 2.5

Table 4. CloudSim configuration

1 data center

Size of VM image 10000 MB

Memory of VM 4096 MB

Number of CPUs in VM 4

Each schedule execution was repeated 48 times. Then, the obtained results were
compared with those returned by BS, where 96 requests with the same data were
placed.

Evaluation of the Secure Blockchain Scheduler Based on Makespan
[50]

According to the previously presented scenario, an experiment was carried out
where makespan was adopted as a criterion for schedule evaluation. Size of the
BC network was set to 16 nodes. In this part of experiments, the security level
criterion was omitted and will be considered in the next section. The algorithm
for calculating the value of makespan was presented in Eq. 1. The results of this
experiment are shown in Fig. 17. The shorter the time necessary to execute the
entire schedule, the better the schedule was. As demonstrated in the obtained
results, in most cases the best result was achieved by BS. In three cases, the best
makespan was returned. In one case, the returned makespan was not the best
but it is not the worst either. Discrepancy between the minimum and maximum
values returned by the scheduler is the smallest in the case of BS, which confirms
the stability of its operation.
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Fig. 17. Evaluation of the model performance using makespan Source: [49]

Evaluation of the Secure Blockchain Scheduler Based on the Security
Level of the Schedule [51]

In the previous section, the security level criterion was omitted. In this section,
the results of experiment assessing primarily this aspect are presented. Table 5
present the parameters of the considered scheduling scenarios.

Table 5. Experiments outline - expected security level equal to 1.5

SC Expected SL Size of the BC network

makespan 1.5 16 nodes

The SL was calculated based on the values of P failure, P fake and Phacking

parameters [51].
P failure determines the probability of machine failure during task execution

due to the high security requirements specified for this task. This factor is esti-
mated the same for each scheduler used in the experiments. P failure

i,j for specific
machine i and task j was defined by Ko�lodziej [28] as follows:

P failure
i,j =

{
0 sdj ≤ tli
1 − e−α(sdj−tli) sdj > tli

(15)



Blockchain-Based Task and Information Management in CC Systems 195

where

– α failure coefficient defined as a global parameter
– sdj described in Eq. 5
– tli described in Eq. 6

P fake defines the probability that the schedulers send a false or incorrectly
prepared schedule. The following schedulers – (FCFS, HSGA, RR and SJF) –
were not intgrated with the blockchain algorithms, and in such cases we set the
parameter P fake to 0.5. In the case of blockchain-based scheduler BS, where
the schedule is checked by other nodes from the network, the value of P fake is
calculated by using the following formula:

P fake = 1 − Nc

Nv
(16)

where

– Nc number of all confirmations that the schedule is correct obtained by the
node from the verification nodes

– Nv number of all verification of the schedule regardless of whether the answer
was positive or negative

Assuming that there are 16 nodes in the network and MTC is equal to 8, it
can be seen that in the case of BS this factor assumes a value within the range
[0, 0.5], depending on how many requests the node must send to the network to
receive 8 confirmations.

The value of the last factor Phacking indicates the probability of manipulation
or modification of the prepared schedule by unauthorized entities. In the case
of a single schedule module (FCFS, HSGA, RR and SJF), it can be assumed
that Phacking is equal to 0.5. For BS, this value depends on TFt of the attacking
node. The higher the TFt the block adding node has, the greater the probability
that it may launch a majority attack [43] to modify parts of the blockchain. The
Phacking value in that case is calculated according to the following formula:

Phacking
t =

{
0.5 TFt ≥ 1

2BWt
TFt

BWt
TFt < 1

2BWt
(17)

where

– TFt the sum of wl(schedule) for all schedules added to the blockchain by
attacking node within a given period of time t (in this simulation t is equal
to 30 days)

– BWt

The Eq. 17 shows that Phacking in the case of BS assumes a value within the
range [0, 0.5], depending on how high the attacker’s trust factor is in the moment
of adding the block to the blockchain.
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Provided experiments show how much advantage BS module has over the
other scheduling modules when it comes to the security level criterion. The
results of these experiments are presented in Figs. 18 and 19. As can be seen,
the difference in the number of virtual machines and tasks is not significant
because the results are very similar. However, it is worth noticing that BS has a
significant advantage over the other modules. In the case of BS these are values
around 2 while in the case of other schedulers the values are close to 1.5. In the
simulation, the expected SL was set to 1.5 and all schedulers managed to achieve
such a result.

It could be also observed, that the security level of the schedule prepared by
BS is about 0.5 larger than in other cases. The effect of changing the number of
nodes and MTC in the BC configuration on the P fake value was checked. The
results demonstrate that the P fake value raises with the number of nodes in
the network, which means that for larger networks there is a higher transaction
rejection rate before it receives the appropriate number of confirmations. The
impact of the chain of blocks size, specifically the BWt value, on the Phacking

factor. It turns out that the more transactions and blocks are in the chain, the
lower the Phacking value is, which means that the security level of schedules
grows with the length of blockchain and number of transactions placed in it.
The highest SL achieved value was 2.266, a very good result compared to the
1.518 obtained by the other modules.

Fig. 18. Evaluation of the model performance using security level - 32 VM and 1024
tasks Source: [49]
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Fig. 19. Evaluation of the model performance using security level - 128 VM and 4096
tasks Source: [49]

5 Conclusions

Blockchain is a popular financial technology that uses ICT environments for
virtual financial transactions using cryptocurrencies (e.g. Bitcoin). Blockchain
customers store their transaction records in the blockchain P2P network, which
effectively utilises the computing resources of its peers. A proof of work and a
proof of stake are blockchain consensus algorithms used to improve the security
of blockchain transactions.

This chapter briefly discussed the benefits of integrating the blockchain net-
work with the elastic, scalable cloud environment to enhance the trustfulness of
data servers and the security of data and user management. We also identified
the challenges posed by this integration process. We presented a new concept
of integrating the clouds infrastructure and schedulers with the blockchain algo-
rithms to monitor the execution of the security-aware task scheduling in the
cloud, one of the most important research topics in today’s cloud and fog com-
puting. We believe that the new blockchain-based scheduling model will allow
us to overcome the problem of implementing the existing models in real-life
scenarios.
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